Январь 2010 Февраль 2010 Март 2010 Апрель 2010 Май 2010
Июнь 2010
Июль 2010 Август 2010 Сентябрь 2010
Октябрь 2010
Ноябрь 2010 Декабрь 2010 Январь 2011 Февраль 2011 Март 2011 Апрель 2011 Май 2011 Июнь 2011 Июль 2011 Август 2011 Сентябрь 2011 Октябрь 2011 Ноябрь 2011 Декабрь 2011 Январь 2012 Февраль 2012 Март 2012 Апрель 2012 Май 2012 Июнь 2012 Июль 2012 Август 2012 Сентябрь 2012 Октябрь 2012 Ноябрь 2012 Декабрь 2012 Январь 2013 Февраль 2013 Март 2013 Апрель 2013 Май 2013 Июнь 2013 Июль 2013 Август 2013 Сентябрь 2013 Октябрь 2013 Ноябрь 2013 Декабрь 2013 Январь 2014 Февраль 2014 Март 2014 Апрель 2014 Май 2014 Июнь 2014 Июль 2014 Август 2014 Сентябрь 2014 Октябрь 2014 Ноябрь 2014 Декабрь 2014 Январь 2015 Февраль 2015 Март 2015 Апрель 2015 Май 2015 Июнь 2015 Июль 2015 Август 2015 Сентябрь 2015 Октябрь 2015 Ноябрь 2015 Декабрь 2015 Январь 2016 Февраль 2016 Март 2016 Апрель 2016 Май 2016 Июнь 2016 Июль 2016 Август 2016 Сентябрь 2016 Октябрь 2016 Ноябрь 2016 Декабрь 2016 Январь 2017 Февраль 2017 Март 2017 Апрель 2017
Май 2017
Июнь 2017
Июль 2017
Август 2017 Сентябрь 2017 Октябрь 2017 Ноябрь 2017 Декабрь 2017 Январь 2018 Февраль 2018 Март 2018 Апрель 2018 Май 2018 Июнь 2018 Июль 2018 Август 2018 Сентябрь 2018 Октябрь 2018 Ноябрь 2018 Декабрь 2018 Январь 2019 Февраль 2019 Март 2019 Апрель 2019 Май 2019 Июнь 2019 Июль 2019 Август 2019 Сентябрь 2019 Октябрь 2019 Ноябрь 2019 Декабрь 2019 Январь 2020 Февраль 2020 Март 2020 Апрель 2020 Май 2020 Июнь 2020 Июль 2020 Август 2020 Сентябрь 2020 Октябрь 2020 Ноябрь 2020 Декабрь 2020 Январь 2021 Февраль 2021 Март 2021 Апрель 2021 Май 2021 Июнь 2021 Июль 2021 Август 2021 Сентябрь 2021 Октябрь 2021 Ноябрь 2021 Декабрь 2021 Январь 2022 Февраль 2022 Март 2022 Апрель 2022 Май 2022 Июнь 2022 Июль 2022 Август 2022 Сентябрь 2022 Октябрь 2022 Ноябрь 2022 Декабрь 2022 Январь 2023 Февраль 2023 Март 2023 Апрель 2023 Май 2023 Июнь 2023 Июль 2023 Август 2023 Сентябрь 2023 Октябрь 2023 Ноябрь 2023 Декабрь 2023 Январь 2024 Февраль 2024 Март 2024 Апрель 2024 Май 2024 Июнь 2024 Июль 2024 Август 2024 Сентябрь 2024 Октябрь 2024 Ноябрь 2024
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25
26
27
28
29
30

«Это же элементарно!» — физики МГУ научились различать «мёртвые» звёзды

150
Двойные звёздные системы — настоящая головная боль для астрономов: как понять, что скрывается за ярким сиянием одной звезды — белый карлик или нейтронная звезда? Белые карлики, нейтронные звёзды, чёрные дыры... Когда-то все они были могучими звёздами, а теперь представляют собой лишь «хладные трупы» — сверхплотные останки. Одни — размером с Землю, другие — с крупный город, но с массой в полтора Солнца. Однако, когда речь заходит об их исследовании, астрономы сталкиваются с одной и той же проблемой: как отличить их друг от друга, если они находятся в двойных звёздных системах и скрыты от нас за излучением звезды-компаньона? И недавно российские учёные совершили важное открытие в этой области: они предложили новый способ различать белых карликов и нейтронные звёзды, которые скрываются в двойных звёздных системах. Давайте разберёмся, какие бывают звёзды, как их исследуют астрономы и что такого особенного в этом новом методе. Какие бывают звёзды? Как и у всего во Вселенной, у звёзд есть свой жизненный цикл: рождение, развитие и, в конце концов, смерть. Рождаются они из гигантских облаков газа и пыли, сжимаясь под действием собственной гравитации. В начале своей жизни они называются протозвёздами: на этой стадии жизни звезда ещё не начала светиться. Далее, протозвезда начинает сжиматься, температура и давление растут. Когда температура достигает критического значения, запускаются термоядерные реакции. Водород превращается в гелий и выделяет огромное количество энергии, а звезда начинает сиять: чем массивнее звезда, тем она горячее и ярче. Это звёзды главной последовательности, самые обычные, прямо как наше Солнце (или тяжелее). Дальнейшая судьба звезды зависит от её массы (размер тут имеет значение, да). Водород у звёзд рано или поздно заканчивается, она начинает расширяться и превращается в гиганта или супергиганта, а в её ядре происходят более сложные реакции. А когда водород закончится совсем, звезда сбрасывает свои внешние слои и от неё остаётся только компактное ядро — белый карлик: там уже нет никаких термоядерных реакций, и он постепенно остывает. Эти звёзды очень плотные: их масса сравнима с массой Солнца, но они размером с Землю. Более массивные звёзды заканчивают свой путь гораздо эффектнее: взрывом сверхновой. От такой катастрофы внешние слои звезды выбрасываются в космос, а ядро сжимается и формирует нейтронную звезду или даже чёрную дыру. Нейтронные звёзды очень плотные и состоят в основном из нейтронов (неожиданно, правда?). Ещё они могут очень быстро вращаться и обладают сильным магнитным полем. Эти объекты радиусом около 10-15 км, но их масса в несколько раз больше массы Солнца. Ну а чёрные дыры настолько массивные, что их гравитация не позволяет ничему, даже свету, покинуть их пределы. Как астрономы изучают звёзды? Итак, каждая звезда — это гигантский реактор, в недрах которого происходит всякое, от чего зависит жизнь галактик и Вселенной в целом, но как изучать объекты, которые находятся от нас на колоссальных расстояниях? Для этого у астрономов есть куча разнообразных способов и методов. Из самого очевидного — телескопы. Как наземные, так и космические, они улавливают свет и другие виды излучения от звёзд, что позволяет узнать их яркость, цвет и даже скорость движения. Спектроскопия разлагает свет звезды на спектр — своеобразную «радугу», в которой зашифрована информация о химическом составе, температуре и магнитных полях звезды. Фотометрия — это точные измерения яркости звёзд. На основе анализа изменения блеска астрономы могут определить размер звезды, расстояние до неё и даже обнаружить планеты, которые вокруг неё вращаются. Радиоастрономия улавливает радиоволны, которые звёзды испускают, что позволяет увидеть невидимое, скрытое от нас облаками газа и пыли — пульсары и квазары. И, наконец, гравитационное микролинзирование — это удивительное явление, когда гравитация одной звезды действует как линза и усиливает свет от другой, более далёкой звезды. Этот метод позволяет изучать даже самые тусклые и незаметные звёзды. Все эти методы используются в совокупности, поэтому мы и имеем цельную картины того, за чем наблюдаем.. Как различать невидимое? Итак, для всяких скрытых объектов у нас есть радиоастрономия: белые карлики и нейтронные звёзды часто входят в состав двойных систем, где их компаньоном является обычная звезда. И гравитация такой компактной звезды настолько сильна, что начинает «перетягивать» вещество с поверхности звезды-соседа. Этот процесс называется аккрецией: «при падении» на поверхность компактного объекта вещество разогревается до миллионов градусов и начинает испускать рентгеновские лучи. И, как бы ни отличались в реальности друг от друга белые карлики и нейтронные звёзды, понять кто есть кто при наблюдении с Земли чрезвычайно сложно, ведь в рентгеновском диапазоне они очень похожи. Но учёные из МГУ решили этот вопрос: спектральные индексы α, которые можно наблюдать во время вспышек, помогут различить звёздные объекты. Спектральные индексы α — это, грубо говоря, числа, которые показывают, как сильно меняется яркость рентгеновского излучения объекта в зависимости от энергии фотонов. Чем больше индекс, тем больше высокоэнергетических фотонов излучает объект. В чём же причина таких различий? Дело в том, что нейтронные звёзды намного горячее белых карликов: из-за высокой температуры (1.1–1.5 кэВ) поверхность нейтронной звезды отражает рентгеновское излучение, которое испускает падающее на неё вещество. А вот холодная (0.1–0.2 кэВ) поверхность белого карлика, наоборот, поглощает большую часть рентгеновских лучей. И такой вот маленький нюанс даёт астрономам возможность определить, кто там: белый карлик или нейтронная звезда. Температура в кэВ (килоэлектронвольт) применяется в высокоэнергетической физике и астрофизике, когда речь идёт о частицах, которые обладают очень высокой энергией. Так можно непосредственно указать энергию фотонов, которые излучают горячие объекты. Если перевести, например, в Кельвины, то температура на поверхности белых карликов 0.1–0.2 кэВ будет соответствовать более чем 1 миллиону Кельвинов, а нейтронных звёзд (1.1–1.5 кэВ) — 10 миллионов Кельвинов и выше. И это оказалось очень просто: не нужно никаких громоздких теоретических моделей или сложного оборудования. Всё, что требуется — наблюдать объект во время рентгеновской вспышки и измерить спектральный индекс. Результаты опубликованы в World Journal of Physics. Почему это важно? А важно это как минимум потому, что это следующий шаг в изучении эволюции звёзд и свойств материи в экстремальных условиях. Новый метод позволит астрономам точнее определять природу компактных объектов в двойных системах. А в будущем это поможет лучше понять процессы, которые проистекают во Вселенной (только представьте, сколько всего мы ещё не знаем?). Представьте, что вы ищете чёрную кошку в тёмной комнате. Долгое время была только одна подсказка — кошачье мяуканье, а теперь у вас появился фонарик, который освещает небольшой участок комнаты. Именно так можно описать важность открытия учёных МГУ для астрономии. А изучение звёзд помогает нам лучше понять не только устройство Вселенной, но и своё место в ней. Ведь каждый атом нашего тела, каждая крупица материи вокруг нас — это часть грандиозного космического круговорота, в котором рождаются, живут и умирают звёзды.
Ria.city

Читайте также

Блоги |

Псковская команда КВН «Камбаламба» готовится к финалу Центральной Лиги «НЕВА»

Блоги |

15 процентов псковичей не будут дарить новогодние подарки - опрос

Блоги |

Лучшие онлайн казино с выводом на банковскую карту: рейтинг 2024-2025

Новости России

Стабильная связь и удобный дизайн: наушники-клипсы A4Tech Biosong B5

Воронежский «Факел» отыгрался на последних секундах матча с московским «Динамо»

«Микробиотики микст» с антоцианами удостоены золотой медали на Международном Конкурсе качества

Источник 360.ru сообщил о выпрыгнувшем с судна на западе Москвы пассажире

Новости на английском

Michail Antonio reveals he was barred from entering the UK after passport blunder in nightmare international break

Las Vegas GP F1 qualifying: George Russell takes pole, Lewis Hamilton only 10th

F1 Las Vegas Grand Prix – Start time, starting grid, how to watch, & more

Sky Sports commentator stunned by ‘one of the strangest reactions to a goal I’ve ever seen’ by Watford fans

Moscow.media

News24.pro и Life24.pro — таблоиды популярных новостей за 24 часа, сформированных по темам с ежеминутным обновлением. Все самостоятельные публикации на наших ресурсах бесплатны для авторов Ньюс24.про и Ньюс-Лайф.ру.

Разместить свою новость локально в любом городе по любой тематике (и даже, на любом языке мира) можно ежесекундно с мгновенной публикацией самостоятельно — здесь.

Персональные новости

Музыкальные новости
Pink Floyd

Майли Сайрус выпустит альбом «Something Beautiful», вдохновленный группой Pink Floyd

Авто в России и мире

Зима отменяется: Вильфанд заявил, что плюсовая температура продлится до конца декабря и дал точный прогноз на Новый год

Владислав Мурашов оценил ключевые показатели готовности Ленинского округа к зиме

Аналитики отметили, что покупатели стали переключаться с новостроек на вторичную недвижимость

«Суперский подарок на день рождения!» 100 млн рублей в моментальных лотереях от «Столото» выиграла жительница Москвы

Экология в России и мире

Спорт в России и мире

Новости тенниса
Кубок Билли Джин Кинг

Италия в 5-й раз выиграла Кубок Билли Джин Кинг и сравнялась с Россией


F1 Las Vegas Grand Prix – Start time, starting grid, how to watch, & more

Michail Antonio reveals he was barred from entering the UK after passport blunder in nightmare international break

Las Vegas GP F1 qualifying: George Russell takes pole, Lewis Hamilton only 10th

African diplomats sat down at school desks