Январь 2010 Февраль 2010 Март 2010 Апрель 2010 Май 2010
Июнь 2010
Июль 2010 Август 2010 Сентябрь 2010
Октябрь 2010
Ноябрь 2010 Декабрь 2010 Январь 2011 Февраль 2011 Март 2011 Апрель 2011 Май 2011 Июнь 2011 Июль 2011 Август 2011 Сентябрь 2011 Октябрь 2011 Ноябрь 2011 Декабрь 2011 Январь 2012 Февраль 2012 Март 2012 Апрель 2012 Май 2012 Июнь 2012 Июль 2012 Август 2012 Сентябрь 2012 Октябрь 2012 Ноябрь 2012 Декабрь 2012 Январь 2013 Февраль 2013 Март 2013 Апрель 2013 Май 2013 Июнь 2013 Июль 2013 Август 2013 Сентябрь 2013 Октябрь 2013 Ноябрь 2013 Декабрь 2013 Январь 2014 Февраль 2014 Март 2014 Апрель 2014 Май 2014 Июнь 2014 Июль 2014 Август 2014 Сентябрь 2014 Октябрь 2014 Ноябрь 2014 Декабрь 2014 Январь 2015 Февраль 2015 Март 2015 Апрель 2015 Май 2015 Июнь 2015 Июль 2015 Август 2015 Сентябрь 2015 Октябрь 2015 Ноябрь 2015 Декабрь 2015 Январь 2016 Февраль 2016 Март 2016 Апрель 2016 Май 2016 Июнь 2016 Июль 2016 Август 2016 Сентябрь 2016 Октябрь 2016 Ноябрь 2016 Декабрь 2016 Январь 2017 Февраль 2017 Март 2017 Апрель 2017
Май 2017
Июнь 2017
Июль 2017
Август 2017 Сентябрь 2017 Октябрь 2017 Ноябрь 2017 Декабрь 2017 Январь 2018 Февраль 2018 Март 2018 Апрель 2018 Май 2018 Июнь 2018 Июль 2018 Август 2018 Сентябрь 2018 Октябрь 2018 Ноябрь 2018 Декабрь 2018 Январь 2019 Февраль 2019 Март 2019 Апрель 2019 Май 2019 Июнь 2019 Июль 2019 Август 2019 Сентябрь 2019 Октябрь 2019 Ноябрь 2019 Декабрь 2019 Январь 2020 Февраль 2020 Март 2020 Апрель 2020 Май 2020 Июнь 2020 Июль 2020 Август 2020 Сентябрь 2020 Октябрь 2020 Ноябрь 2020 Декабрь 2020 Январь 2021 Февраль 2021 Март 2021 Апрель 2021 Май 2021 Июнь 2021 Июль 2021 Август 2021 Сентябрь 2021 Октябрь 2021 Ноябрь 2021 Декабрь 2021 Январь 2022 Февраль 2022 Март 2022 Апрель 2022 Май 2022 Июнь 2022 Июль 2022 Август 2022 Сентябрь 2022 Октябрь 2022 Ноябрь 2022 Декабрь 2022 Январь 2023 Февраль 2023 Март 2023 Апрель 2023 Май 2023 Июнь 2023 Июль 2023 Август 2023 Сентябрь 2023 Октябрь 2023 Ноябрь 2023 Декабрь 2023 Январь 2024 Февраль 2024 Март 2024 Апрель 2024 Май 2024 Июнь 2024 Июль 2024 Август 2024 Сентябрь 2024 Октябрь 2024 Ноябрь 2024 Декабрь 2024
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
29
30
31
Интернет |

Нейросеть и управление механизмами

Ученые Пермского Политеха научили нейросеть быстро и точно менять режимы работы электродвигателя для управления сложными механизмами.

Для работы лифтов, прессов, металлорежущих станков и других электроприводных систем используют двигатели постоянного тока. Они преобразуют поступающую электроэнергию в механическое вращение. При этом током, скоростью, положением и другими важными параметрами управляют специальные электронные регуляторы, которые поддерживают все переменные на нужном уровне, не допуская отклонений.

Но не всегда электронные регуляторы обеспечивают необходимую точность и скорость работы двигателей, что приводит к рывкам, толчкам, замедленному реагированию на изменение условий работы механизма. Поэтому широкое применение в подобных системах начинают находить нейросети.

Ученые Пермского Политеха разработали эффективный подход к обучению нейросетей, который позволяет тонко настраивать регуляторы электродвигателей и избегать возникновения ошибок.

Обучать нейросеть можно по-разному: с «учителем» и без.
В первом случае ее учат просто «подражать» уже настроенному регулятору, но недостаток данного метода в том, что так нейросеть не сможет работать лучше своего прототипа.
Во втором нейросеть самостоятельно анализирует загружаемые в нее входные данные и ищет в них закономерности. Здесь возникает другая сложность: непросто подобрать нужную выборку данных для обучения.

Ученые Пермского Политеха разработали оригинальный подход, когда нейросеть тренируется не на самом промышленном объекте, а на его «цифровом двойнике». Для этого специалисты предприятия совестно с учеными разрабатывают специальные имитационные модели, которые описывают процессы движения и взаимодействия разных частей механизма, в том числе двигателя и его элементов, с помощью математических уравнений. Это позволяет выполнить настройку регулятора, не нарушая условий работы реального производственного процесса.

Обучение всегда происходит по методу «проб» и «ошибок»: на начальных этапах ИИ не знает, какое воздействие будет правильным, поэтому просто перебирает случайные параметры и пробует применить их к системе. Если они окажутся ошибочными, скорректирует их и попробует снова. Но в условиях реального производства нельзя позволить ей подобным образом экспериментировать и нарушать ход рабочего процесса, ведь это может привести к аварийным ситуациям. Поэтому использование модели – это способ более тонко обучить регулятор на большом количестве различных данных.

– В нашем подходе мы применяем «функцию потерь», которая оценивает расхождение между предсказаниями модели и фактическими значениями, которые собраны с существующего объекта. Это возможность более тонко «объяснить» нейросети, чего мы хотим от нее добиться. При этом, в отличие от традиционной работы нейрорегулятора, в нашей схеме эта функция не встроена в ИИ, она действует как «внешний наблюдатель», сравнивает прогноз сети с истиной и сообщает, насколько хорошо сеть справилась, – комментирует Дмитрий Даденков, доцент кафедры «Микропроцессорные средства автоматизации» ПНИПУ, кандидат технических наук.

Политехники протестировали процесс обучения на примере системы регулирования скорости в двигателе. Они создали жесткие условия: нейросеть должна была регулировать скорость вращения, во-первых, когда она менялась резко и непредсказуемо, во-вторых, при изменяющейся нагрузке, т. е. того необходимого сопротивления, которое двигатель должен преодолевать, чтобы вращаться.

– Подобные условия могут возникнуть на станках, конвейерах или в аварийных ситуациях, когда нужно резко переключить скоростной режим или вовсе остановить работу. Это требует от устройства быстрой реакции и точности движений. Тесты показали, что регулятор, обученный по нашей схеме, работает корректно: при изменении нагрузки скорость двигателя практически не проседает, а при необходимости задать другую скорость наблюдается незначительное перерегулирование – около 1%. Для проверки работы нейрорегулятора в реальных условиях на измеренное состояние объекта накладывался «шум» – случайные некорректные данные. Регулятор, который обучался на модели без него, успешно справлялся с управлением скоростью и на зашумленном объекте, – рассказывает Игорь Шмидт, доцент кафедры «Микропроцессорные средства автоматизации» ПНИПУ, кандидат технических наук.

Применение таких регуляторов не ограничивается двигателями постоянного тока, их имеет смысл применять везде, где классические регуляторы справляются плохо: если объект управления является сложной нелинейной, многосвязной системой, или имеются дополнительные критерии качества управления.

Подход ученых Пермского Политеха предоставляет практически неограниченные возможности по тонкой настройке нейрорегулятора. Также при получении информации о факторах, которые могут привести к ошибке, нейросеть заранее предотвращает ее появление. Это позволяет эффективно управлять процессами в электроприводных системах лифтов, конвейеров, металлорежущих станков, прокатных станов и подъемно-транспортных машин.

Статья опубликована в журнале «Электротехника», №11, 2024. Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет 2030».

Источник информации — пресс-служба ПНИПУ.

Ria.city

Читайте также

Блоги |

Салатный вариант мяса по-французски: слоёный салат с курицей, грибами и сыром

Авто |

В Кисловодске за три года отремонтировали рекордное количество дорог

Блоги |

Скумбрия в духовке на новогодний стол + рецепт домашнего соуса терияки

Новости России

Что работодатели должны знать о поколении Z?

Почему в Москве столько заборов?

Врач Сазонова рассказала, как подготовить организм к новогодним праздникам

Водитель снегоуборочной машины задавил насмерть ребенка на Ямале

Новости часа

Color Monster DOP Story 1.2.5

Sorry Metaphor, but after playing 300 hours worth of Atlus RPGs in 2024, Shin Megami Tensei 5: Vengeance is my favorite

Не качаются приложения в Google Play? Собрали список альтернатив на Android

Ubisoft had an absolutely dire 2024 and desperately needs a win

Moscow.media

News24.pro и Life24.pro — таблоиды популярных новостей за 24 часа, сформированных по темам с ежеминутным обновлением. Все самостоятельные публикации на наших ресурсах бесплатны для авторов Ньюс24.про и Ньюс-Лайф.ру.

Разместить свою новость локально в любом городе по любой тематике (и даже, на любом языке мира) можно ежесекундно с мгновенной публикацией самостоятельно — здесь.

Персональные новости

Музыкальные новости
Баста

Баста и Ева Польна, Михаил Шуфутинский с Artik & Asti и другие: каким будет новогоднее шоу «VK ПОД ШУБОЙ 3»

Авто в России и мире

Президента Индонезии пригласили на 80-летие Победы в Москву

День памяти пророка Аггея православные отмечают 29 декабря 2024 года

Из-за атаки БПЛА 12 поездов задержали в Воронежской области

Японский Новый год в «Тропикана Парк»

Экология в России и мире

Спорт в России и мире

Новости тенниса
ATP

Стала известна сетка турнира ATP-250 в Брисбене, где сыграют Новак Джокович и Ник Кирьос


'Gully cricket khel raha hai kya?': Rohit rebukes Yashasvi

Shastri slams Australian media as Virat Kohli faces heat

‘Make your own mind up’ – Ruben Amorim gives worrying update on Marcus Rashford’s Man Utd future

OpenAI announces plan to transform into a for-profit company